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Entropy Calculations for Charged 
Spheres and the Entropy of Molten 
Salts 
G. M. ABERNETHY and M. SILBERT 

School of Mathematics and Physics, University of East Anglia, Norwich, NR4 7TJ, UK. 

(Rereivcd Mnrch 23, 1981) 

We derive an expression for the entropy S of a system of charged hard spheres within the Mean 
Spherical Approximation (MSA). We study the behaviour of the coulombic contribution a s  a 
function of both the charging process and the ionic radii ratio. We find that the latter gives an 
important ordering contribution to S, which is greatly exaggerated in the MSA. We have also 
calculated S using the data appropriate for the molten alkali halides. The results compare poorly 
with the experimental entropies and therefore C i l S t  doubts on the MSA as a suitable reference 
system for molten salts. 

1 INTRODUCTION 

During the past decade important developments have taken place in our 
understanding of the thermodynamic and structural properties of molten 
salts.*-3 

Progress in the theoretical front has been made possible by computing 
simulation studies, and the availability of analytic solutions, within the Mean 
Spherical Approximation (MSA), of a system of charged hard spheres.’-’ 
In spite of the known shortcomings of the latter, it is now possible to consider 
the practicability of using perturbation theories to study the properties of 
molten salts. 

One property which is not directly available from computing simulation 
studies is the entropy S of the system. During the last few years we have 
shown that, within the framework of the Gibbs-Bogoliubov variational 
method, the entropy of simple liquids, where a system of hard spheres (HS) 
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196 G. M. ABERNETHY A N D  M. SILBERT 

may be thought of as a convenient choice of reference system, is given by 

s N S H S  (1) 

and the results thus obtained correlate well with both thermodynamic and 
structural experimental results.8-'0 

In this work we have attempted a similar analysis for the case of molten 
salts, in particular molten alkali halides. Although these are binary systems, 
the charge neutrality condition fixes up the concentration and, consequently, 
it is the entropy of the system-rather than the entropy of mixing as in other 
other binary liquids-which is the object of interest. 

We are assuming here that a system of charged hard spheres is a suitable 
reference system for molten salts and, within the MSA, we show that a simple 
analytic expression for the entropy is obtained. We shall see, however, that 
unlike the case of simple liquids, the entropy of the reference system, say 
So, is not the only contribution to the entropy of the system, though we 
argue that it is the dominant term. 

The results obtained in this paper confirm this view, but they mirror the 
shortcomings of the MSA and, hence, tend to correlate better with the experi- 
mental results when the ionic radii are of similar size. 

In Section 2 we derive the expression for the entropy, which is applied to 
the molten alkali halides in Section 3. We complete the paper with a discussion 
of our results. 

2 FORMALISM 

The starting point in the Gibbs-Bogoliubov approach is the inequality 

F I = F o  + (a - @o)o ( 2 )  
where F and F o  are, respectively, the Helmholtz free energies of the system 
and the reference system. We may assume, although it is not necessary for 
the purposes of this work, that the potential energy of the system is given by 
the Born-Huggins-Mayer form of the rigid-ion potential4 

4 i j ( r )  = zizj 5 + B~~ exp(-clijr) - r 
Cij Dij 

r6 r8 (3) 

i.e., a pairwise interaction which includes a coulombic term, a short-range 
repulsive term of the Born-Mayer form, and dipole-dipole and dipole- 
quadrupole attractive van der Waals interactions. For the reference system, 
we assume the potential to be 
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ENTROPY OF MOLTEN SALTS 197 

In both equations, (3) and (4), i and j can be either + or - and, henceforth, 
we assume the system to be fully ionic, i.e. I Zi I = 1 for all alkali-halides. 

Equation (4) is the potential energy of interaction of a system of charged 
hard-spheres with hard-sphere diameter oi, oj and such that o+ - = 
go+ + o-). The radial distribution functions for this system, gE(r), depend 
not only on the relative distance between the ions and on the density n, but 
also on a parameter-say A-which is the ratio between the coulombic and 
thermal energies of the system. 

The second term on the rhs of Eq. (2) is the ensemble average, over the 
reference system, of the difference between the potential energies of inter- 
action of the system and the reference system, which reads 

r m  

(@ - m0),-, = fn C xixj J uiJ{r)gE{r)4nr2 dr (3) 
i ,  j oj J 

where xi is the concentration of species i, such that xi  xi = 1, and we have 
defined uiJ{r) = q5iJ{r) - &r). 

Assuming the hard-sphere diameters to be the variational parameters, 
these may be chosen by taking ( t 3 F / / a ~ ~ ) ~ , ~ , ~ ,  = 0, and we may assume 
thereafter that F N F. In this case the entropy is given by 

0 

m 

S = - (g) V , u + , u -  = So - i n  i ,  j xixj[& ~ u i q J { r ) g ~ { r ) 4 x r ’  dr] (6 )  

The temperature derivative on the second term of the rhs above can go 
under the integral sign since the only term depending explicitly on the T is 
g:(r), i.e. 

Thus, besides the entropy of the reference system S o ,  there is a contribution 
arising as a result of the temperature dependence of gE{r) and containing 
the weak, attractive, van der Waals forces. It is generally agreed3,4 that the 
long-range character of the coulombic forces, already taken care of in S o ,  
is the dominant part of the potential and it is therefore sensible to assume 
that the contribution of S1 to the entropy of the system will be small com- 
pared to S o .  

Since in this work we are only interested in So and have not implemented 
the variational procedure we shall not make predictions as to the quantitative 
value of S1. We shall henceforth drop suffices when referring to the entropy 
of the reference system. 
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198 G. M. ABERNETHY AND M. SILBERT 

The analytic solution of a system of charged spheres, within the MSA, for 
the general case when the hard-sphere diameters are different is due to 
Blum.6 As with all approximate theories, different thermodynamic routes 
lead to different results. We have chosen the internal energy route for two 
reasons: (i)  it is the one which gives better agreement with computing simula- 
tion results, and (ii) the expression for the entropy is easily derived. 

We start with the thermodynamic relation 

F = E - T S  (8) 

where F and E denote, respectively, the Helmholtz and the internal energy. 
Following Hiroike,’ we have? 

E k B T r 3  +-+- F - F H S  --- 
Nk,T N k B T  N k , T  3nn (9) 

where FHS is the hard sphere contribution, AE the excess energy due to the 
charges and r a generalized Debye inverse screening length, which can be 
obtained by solving a transcendental equation which we include in the 
Appendix for completeness. N is the total number of particles in the system 
such that, in the particular case of the alkali-halides N ,  = N -  = 3N.  The 
second and third terms on the rhs of Eq. (9) are obtained from AE via Kirk- 
wood’s charging process. 

Combining (8) and (9), and bearing in mind that the internal energy is 
given by E = $Nk,  T + AE, we have for the entropy 

s = SHS + sc  (10) 

i.e. the entropy of the system of charged hard spheres is just the additive 
contribution of the hard spheres and the coulombic terms. 

For S, we use the Percus-Yevick compressibility equation of state, 
which gives” 

SHS = si + s, + s, + s, (1 1) 

where the rhs of Eq. (1 1) is made up by the following contributions: 

the ideal gas term: 

with mi the mass of species i ;  

t We have corrected here a misprint which appears in Eq. ( 1  I )  of Hiroike’s paper. 
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ENTROPY OF MOLTEN SALTS 

the ideal mixing term 

s, - = -(x+ In x +  + x-lnx-) 
NkB 

the packing term 

199 

(13) 

where q = inn ci xio?; 

and the mismatch term 
4 

(15) 
s, nx+x-n(rJ+ - 0-)2[12(a+ + 0-1- nn(x.04, + La-)] -- - 

NkB 24(1 - q)' 

The MSA expression for Sc is given by 

Note that Eqs. (12) to (16) give the entropy per ion in units of the Boltzmann 
constant. 

Before we proceed to present the numerical results a short discussion of 
the shortcomings of Eq. (10)-together with Eqs. (11) to (16)-is in order. 

We believe that Eq. (10) may be improved in two ways: 

i) By using a better approximation than the MSA for the system of charged 
spheres. Recent analytic results have become available which may be very 
~ s e f u l , ' ~ ~ ' ~  and we are currently trying to find out whether a simple, closed 
expression, for the entropy may be obtained from the new results. Whatever 
improvements may be attained, we believe that the additive form of Eq. (10) 
will be preserved, except that the expressions for SHs and S ,  will be different. 
Moreover we expect that S ,  will still be proportional to r3, though its ex- 
pression may be affected by the improved approximation. In the simpler 
Debye-Hiickel theory this is also the case and this behaviour appears to 
be the feature of the coulombic contribution to the entropy. 

ii) By assuming that the reference system is made up by soft charged 
spheres. The entropy contribution due to the softness of the repulsive 
potential is not negligible but is small compared to SHS. This has, in fact, 
been the conclusion of Kumaravadivel and Evans14 in considering the 
contribution of the softness of repulsive potentials to the entropy of liquid 
metals, and there are no good reasons to believe that it will be different for 
molten salts. 
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200 G. M. ABERNETHY AND M. SILBERT 

3 RESULTS 

We have used the equations of the preceding section to calculate the en- 
tropies of charged hard spheres at tliermodynamic states corresponding to 
the melting points of the alkali halides. In our calculations we have used as 
input data the experimental densities and temperatures’ and the ionic 
radii of Fumi and Tosi4 The latter choice is due to the fact that these give a 
good fitting to the compressibility and partial structure factors of the alkali 
halides, within the MSA.l6.l7 

Before we present these results it is useful to consider how Sc-Eq. (16) 
-varies with I Zi I and the ionic radii ratio, which is shown in Figures 1 and 2. 

Figure 1 shows how Sc changes as the charges vary from IZiJ = 0 to 1. 
The main feature here is the degree of “ordering” brought about by the 
charging process. In these calculations we have assumed that CT+ = CT-  = 
3 A, T = lo00 K and n = 0.05 A-3,  which do not differ greatly from molten 
K C1. 

More important are the changes in Sc as a function of the ratio of the 
ionic diameters, say a+/c-, shown in Figure 2. These are large between 0.1 

D 

I21 _.c 

Coulombic contribution to the entropy (Eq. 16). Charge variation. Units as in FIGURE 1 
tables. Input data: o+ = u = 3.0 A; T = to00 K ;  n = 0.05 k3. 
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ENTROPY OF MOLTEN SALTS 201 

- a+/6- 

FIGURE 2 Coulombic contribution to the entrop (Eq 16) Variation of the ionic radii ratio. 
Units as in tables. Input data: 121 = 1.0; 6- = 3.0 , T = 1000 K ;  n = 0.05 k3. i. ’ ’ 
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202 G .  M. ABERNETHY AND M. SILBERT 

and 0.4 and suggest that the more the ionic diameters differ, the less charge 
penetration-a measure of the charge fluctuations in the system-will be. 
This is in line with the recent neutron scattering results of Biggin and En- 
derby18 for molten ZnCl which show that the screening of the smaller ions, 
Z:, by the larger ions, C1-, is so complete that the radial distribution func- 
tions show no charge penetration at all. Thus, in the light of our results, it 
follows that the lithium-halide series will show more screening than the other 
alkali-halides. Recent computing simulation work by Dixon and Gillan' 
on the molten alkali-chloride family do not lend support to the above asser- 
tion. There is, of course, slightly less charge penetration in LiCl than the 
others, but this effect is only just perceptible. The fact is that the MSA 
exaggerates the effects of ionic size difference, as demonstrated in the recent 
work of Abernethy et aLZ0 Consequently we should expect our results to 
worsen with increasing ionic radii ratio. 

We now turn to the entropy calculations for the molten alkali-halides. 
Table I lists the different contributions to the entropy-Eqs. (12) to (16)- 

except for the entropy of mixing which has the same value S ,  = 0.693 for 
all systems. All values are given as entropy per ion in units of the Boltzmann 
constant. 

TABLE I 

Contributions t o  the entropies of'charyed hurd spheres The temperatures and densities 
listed in columns I and 2 are those given by Lumsden.Is The Fumi-Tosi diameters-- 
columns 3 a id 4Gare those listed in Sansgter and D i ~ o n . ~  All values arc given as entropj 

per ion in units of k B .  

Li F 
NaF 
K F  
RbF 
Cs F 
LlCl 
NaCl 
KCI 
RbCl 
CSCl 
LiBr 
NaBr 
K Rr 
RhBr 
CsBr 
LI I 
Nal 
KI  
RbI 
c s  I 

1121 
I268 
I131 
I048 
976 
883 

1073 
1043 
995 
918 
823 

1020 
1007 
965 
909 
742 
933 
954 
920 
899 

0.0836 
0.0558 
0.0394 
0.0351 
0.0289 
0.0426 
0.0321 
0.0247 
0.0223 
0.0200 
0.0350 
0.0273 
0.021 5 
0.0197 
0.0 177 
0.0279 
0.022 1 
0.0177 
0.0 164 
0.0 147 

1.632 
2.340 
2.926 
3.174 
3.440 
1.632 
2.340 
2.926 
3. I74 
3.440 
1.632 
2.340 
2.926 
3. I74 
3.440 
I .632 
2.340 
2.926 
3.174 
3.440 

2.358 
2.358 
2.358 
2.358 
2.358 
3. I70 
3.170 
3. I70 
3.170 
3.170 
3.432 
3.432 
3.432 
3.432 
3.432 
3.814 
3,814 
3.814 
3.814 
3,814 

10.596 
12.085 
12.660 
13.246 
13.663 
11.381 
12.853 
13.473 
14.090 
14.409 
12.080 
13.549 
14.165 
14.778 
15.125 
12.497 
13.976 
14.627 
15.237 
15.640 

2.9 13 
2.858 
3.074 
3.408 
3.304 
3.231 
2.8 19 
2.7 10 
2.779 
2.88 1 
3.343 
2,890 
2.732 
2.783 
2,827 
3,820 
3.092 
2.788 
2,813 
2.752 

0.162 
-0 

0.064 
0.132 
0.196 
0.466 
0.1 11 
0.008 

1.0 
0.009 
0.563 
0.172 
0.03 I 
0.008 
-0 

0.768 
0.280 
0.085 
0.043 
0.013 

4.839 
3.568 
3.612 
3.749 
3.926 
5.707 
3.741 
3.396 
3.401 
3.520 
6.035 
3.835 
3.401 
3.38 I 
3.427 
6.548 
4.05 I 
3.449 
3.394 
3.325 
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ENTROPY OF MOLTEN SALTS 203 

TABLE I1 

Excess entropies of molten alkali-halides 
The experimental results are taken from the 
compilation listed in Barin and Knacke." 
The excess entropy is defined as AS = S - 
(S,,, + SJ. All values are given as  entropy 

per ion in units of k,.  

Salt -AS (this work) -AS(exptl) 

LiF 
NaF 
K F  
RbF 
CsF 
LiCl 
NaCl 
KCI 
RbCl 
CSCl 
LiBr 
NaBr 
K Br 
RbBr 
CsBr 
LiI 
NaI 
KI 
RbI 
CSI 

1.6 
6.4 
6.6 
7.0 
7.0 
8.5 
6.4 
6.1 
6.2 
6.4 
8.8 
6.6 
6.1 
6.2 
6.3 
9.6 
6.9 
6.2 
6.2 
6.1 

3.6 
3.6 
3.4 
3.5 
3.7 
3.6 
3.3 
3.4 
4.2 
3.7 
3.7 
3.4 
3.4 
4.1 
3.8 
3.8 
3.4 
3.4 
4.2 
3.4 

In Table I1 we compare the experimental results and those obtained in this 
work for the excess entropy AS = S - (Sid + SJ. Since the ideal mixture 
contribution is model independent, AS is, in our view, a stricter test of the 
approximation used. As in Table I the results quoted are given as the entropy 
per ion in units of k,. 

Our results show that the MSA constitute a poor reference system for 
molten salts. Although the trends are right, it is clear that the effects due to 
charge ordering are over-emphasized, notably when the ionic radii ratio are 
large. 

4 DISCUSSION 

Our calculations are based on the assumption that a perturbation theory 
of the Gibbs-Bogoliubov type is a practical proposition for molten salts, 
with a system of charged spheres as a reference system. Moreover we have 
assumed that a rigid ion potential may be construed as a good effective pair 
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204 G. M. ABERNETHY AND M. SILBERT 

potential for such systems. In their seminal computer simulation work on 
molten salts using a rigid ion potential, Woodcock and Singer2' have shown 
that the entropy of molten KC1 is reproducible to within 1 %. These authors 
used a free volume theory expression for the entropy, such that part of the 
data required is obtained directly from their computer experiment. We have 
asserted that the contribution to the entropy due to the weak van der Waals 
forces is small, Indeed, preliminary calculations on molten KCl suggest that 
it is no more than 0.4 in the units used herein. The contribution due to the 
soft repulsive potential is unlikely to be larger. Detailed calculations of both 
contributions are under way and shall be reported on completion. 

The main problem, however, is with the MSA. Our calculations lead to the 
conclusion that we ought to look at the generalised MSA or other related 
improved approximations and find out whether one of these may become 
a reasonable reference system for molten salts. 

In spite of the preceding remarks, our calculations show some interesting 
qualitative features which should not be overlooked. 

First the ordering effect due to the ionic size difference. Although the 
consequences of this effect seem to be important, we are not aware of any 
systematic theoretical study of this problem. 

Secondly, our calculations help us to understand why, as a result of 
charge ordering, the entropy of mixing of liquid binary alloys with ionic 
tendencies should show a pronounced minima at the stoichiometric 
composition. 
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Appendix 

EXPRESSION FOR I- 

Following Hiroike7 we define 

such that 

(1 + roi)xi + (0; C n x j o j X j  = zi (A21 
"i 

and 

In all our calculations we have taken the dielectric constant E,, to be unity. 
r is obtained by solving the transcendental equation (A2)-using (Al )  and 
(A3)-solving for Xi and then replacing these values in ( A l )  to obtain r. 

The values for r in our work span between 0.8 to 1.6 kl. 
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